MIT 18.01SC: Homework Help for Single Variable Calculus

MIT Recitation Instructors take viewers step-by-step through solving homewo
Course Created by Massachusetts Institute of Technology
The mission of MIT is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the 21st century.

The Institute is committed to generating, disseminating, and preserving knowledge, and to working with others to bring this knowledge to bear on the world's great challenges. MIT is dedicated to providing its students with an education that combines rigorous academic study and the excitement of discovery with the support and intellectual stimulation of a diverse campus community. We seek to develop in each member of the MIT community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

Channel banner photo by Ali Almossawi (http://www.flickr.com/photos/usr_c/5633432466/).

  •   Lifetime access to all lessons!
  •   30 days money back guarantee!
  •   Accessible via iPhone, iPad and Android (soon!)

MIT Recitation Instructors take viewers step-by-step through solving homework problems related to Single Variable Calculus.

View the complete course: ocw.mit.edu/18-01SCF10

License: Creative Commons BY-NC-SA
More information at ocw.mit.edu/terms
More courses at ocw.mit.edu

License:

Course Outline

Chapter 1: MIT 18.01SC: Homework Help for Single Variable Calculus

  • Lesson 1
    Recitation Introduction for…
    01:36
  • Lesson 2
    Definition of the Derivativ…
    12:28
  • Lesson 3
    Graphing a Derivative Funct…
    12:00
  • Lesson 4
    Smoothing a Piece-wise Func…
    09:15
  • Lesson 5
    Constant Multiple Rule | MI…
    07:06
  • Lesson 6
    Tangent Line to a Polynomia…
    04:55
  • Lesson 7
    Derivatives of Sine and Cos…
    08:11
  • Lesson 8
    Product Rule | MIT 18.01SC …
    07:08
  • Lesson 9
    Quotient Rule | MIT 18.01SC…
    04:22
  • Lesson 10
    Chain Rule | MIT 18.01SC Si…
    07:41
  • Lesson 11
    Implicit Differentiation | …
    08:16
  • Lesson 12
    Graphing the Arctan Functio…
    04:24
  • Lesson 13
    Arccos | MIT 18.01SC Single…
    09:33
  • Lesson 14
    Log and Exponent Derivative…
    07:00
  • Lesson 15
    Rules of Logs | MIT 18.01SC…
    09:09
  • Lesson 16
    Hyperbolic trig functions |…
    13:25
  • Lesson 17
    Implicit Differentiation an…
    10:17
  • Lesson 18
    Quadratic Approximation | M…
    07:12
  • Lesson 19
    Quadratic Approximation of …
    14:02
  • Lesson 20
    Sketching a curve | MIT 18.…
    12:20
  • Lesson 21
    Closest Point to the Origin…
    06:40
  • Lesson 22
    Minimum Triangle Area | MIT…
    09:52
  • Lesson 23
    Maximum Surface Area | MIT …
    08:43
  • Lesson 24
    Related rates 1 | MIT 18.01…
    07:52
  • Lesson 25
    Related rates 2 | MIT 18.01…
    17:33
  • Lesson 26
    Using Newton's Method | MIT…
    07:46
  • Lesson 27
    Mean Value Theorem | MIT 18…
    06:06
  • Lesson 28
    Mean value theorem | MIT 18…
    03:23
  • Lesson 29
    Antidiff. With Discontinuit…
    08:52
  • Lesson 30
    Computing Differentials | M…
    04:04
  • Lesson 31
    Linear approx. with differe…
    05:35
  • Lesson 32
    Computing Antiderivatives |…
    08:51
  • Lesson 33
    Antidifferentiation by subs…
    10:09
  • Lesson 34
    Differential Equation | MIT…
    03:24
  • Lesson 35
    Differential Equation With …
    08:14
  • Lesson 36
    Summation Notation Practice…
    14:20
  • Lesson 37
    Riemann sum | MIT 18.01SC S…
    07:26
  • Lesson 38
    Computing the Volume of a P…
    07:10
  • Lesson 39
    4J3, Diffusion of a Chemica…
    12:22
  • Lesson 40
    Definite Integrals of tan(x…
    06:08
  • Lesson 41
    Definite Integral by Substi…
    09:39
  • Lesson 42
    Applying the Second Fundame…
    04:16
  • Lesson 43
    Second fundamental theorem …
    05:04
  • Lesson 44
    Second fundamental theorem …
    07:56
  • Lesson 45
    Area Between the Graphs of …
    04:00
  • Lesson 46
    Area Between y=x^3 and y=3x…
    08:53
  • Lesson 47
    Volume of a Paraboloid via …
    05:55
  • Lesson 48
    Volume of Revolution via Sh…
    08:33
  • Lesson 49
    Average Velocity | MIT 18.0…
    07:20
  • Lesson 50
    Average x-Coordinate in a R…
    10:40
  • Lesson 51
    Explanation of Simpson's ru…
    14:51
  • Lesson 52
    Using the Trapezoid and Sim…
    07:48
  • Lesson 53
    Trig Integral Practice | MI…
    11:22
  • Lesson 54
    Trig Integrals and a Volume…
    09:23
  • Lesson 55
    Integral of tan^4 (theta) |…
    07:58
  • Lesson 56
    Hyperbolic Trig Sub | MIT 1…
    16:28
  • Lesson 57
    Integration by completing t…
    14:05
  • Lesson 58
    Partial Fractions Decomposi…
    19:03
  • Lesson 59
    Finding u and v' When Integ…
    11:38
  • Lesson 60
    Integrating sin^n(x) Using …
    17:02
  • Lesson 61
    Arc Length of y=x^(2/3) | M…
    07:03
  • Lesson 62
    Surface Area of a Torus | M…
    20:56
  • Lesson 63
    Parametric Arclength | MIT …
    08:51
  • Lesson 64
    Polar to Cartesian | MIT 18…
    08:41
  • Lesson 65
    Graph of r = 1 + cos(theta/…
    19:40
  • Lesson 66
    Integration Practice I | MI…
    14:05
  • Lesson 67
    Integration Practice II | M…
    14:46
  • Lesson 68
    Integration Practice III | …
    12:26
  • Lesson 69
    Integration Practice IV | M…
    18:08
  • Lesson 70
    l'Hospital Practice | MIT 1…
    10:47
  • Lesson 71
    Failure of L'Hospital's Rul…
    05:57
  • Lesson 72
    Indeterminate forms | MIT 1…
    11:42
  • Lesson 73
    A Solid With Finite Volume …
    06:01
  • Lesson 74
    Improper Integrals | MIT 18…
    19:39
  • Lesson 75
    Integral of x^n e^(-x) | MI…
    10:44
  • Lesson 76
    Limit of a Series | MIT 18.…
    04:56
  • Lesson 77
    Comparison Tests | MIT 18.0…
    14:16
  • Lesson 78
    Ratio Test for Convergence …
    13:35
  • Lesson 79
    Integral Test | MIT 18.01SC…
    07:48
  • Lesson 80
    Integral Test as Estimation…
    15:15
  • Lesson 81
    Ratio Test -- Radius of Con…
    18:01
  • Lesson 82
    Power Series Practice | MIT…
    10:03
  • Lesson 83
    Finding Taylor's Series | M…
    10:15
  • Lesson 84
    Taylor's Series of a Polyno…
    07:09
  • Lesson 85
    Taylor's Series for sec(x) …
    11:40
  • Lesson 86
    Integration of Taylor's Ser…
    07:50
  • Lesson 87
    Series Calculation Using a …
    13:27

  •   Lifetime access to all lessons!
  •   30 days money back guarantee!
  •   Accessible via iPhone, iPad and Android (soon!)